New satellite data and applications for tropical cyclone operations by 2025: Agency and Interagency plans

NRL Perspective

Josh Cossuth March 16, 2016

Satellite Tropical Cyclone Monitoring

• Problems:

- Aging constellation of LEO microwave imagers and sounders failing and not being replaced
- Scatterometers not being funded by US for long term use
- Legacy sensors often
 deemed too expensive
 for next generation

• Solutions:

- Multi-national efforts
 (GPM), ESA, Korea?, etc.
- Gap fillers (DMSP F-20?, COWVR/WSF?)
- SmallSats and CubeSats as technology enables miniaturization
- Data buys and ride
 "sharing"?

Ocean Vector Surface Vector Winds Constellation

Current status and Outlook – NRT data access

SSMIS Constellation Status

- Loss of F-18 temperature sounding channels last year.
- Unable to communicate with F-19 since early February.
 - Orbit starting to degrade, may not be recoverable.
- Current capability:
 - F-17 partial temp sounder
 - F-18 partial humidity sounder
 - 3 functional imagers
- Status of F-20
 - Decision not to launch made near beginning of year.
 - However, recent F-19 loss may change perspective.

DoD COWVR and WSF

- DoD still searching for a low-cost weather satellite program
 - Ocean surface vector winds and tropical cyclone intensity are among top priorities
- Compact Ocean Wind Vector Radiometer (COWVR)
 - "Technology Demonstration Mission" to launch ~2017
 - JPL leverages Jason-3 AMR
 - 18.7, 23.8, 33.9 GHz polarimetric radiometer
 - Full 360° conical scans (2 looks)
- Weather System Follow-on (WSF)
 - Planned launches ~2022, ~2026
 - Exploring a WINDSAT-like solution

COWVR

Latest Observing Capabilities

- NASA SMAP
 - Launched January 31, 2015
 - Radar stopped transmitting, but radiometer still working
- Jason-3
 - Launched January 17, 2016
 - Continues legacy of radar altimetry observations
- ESA Sentinal-3A
 - Launched February 16, 2016
 - Ocean/land color, topography
 - Sentinal-3B launch ~2017
 - Sentinal-3C launch ~2019

ESA Sentinal-3A ocean and land color instrument (March 2, 2016)

Near-Future Observing Capabilities

- ESA ADM-Aeolus
 - Launch ~2017
 - LIDAR vertical wind profiles
- ESA/Japan EarthCARE
 - Launch ~2018
 - Backscatter LIDAR, cloud profiling radar, passive radiometers
- DoD GFO-2
 - Geodetic Satellite Follow-On 2
 - Launch ~2019?
 - Altimetry similar to Jason series
 - Will be available to NOAA/NASA

The A-Train versus EarthCARE

The A-Train (fully launched 2006)

- NASA
- Multiple platforms
- 700-km orbit
- CloudSat 94-GHz radar
- Calipso 532/1064-nm lidar
- CERES broad-band radiometer
- MODIS multi-wavelength radiometer

- ESA and JAXA
- Single platform
- 393-km: higher sensitivity
- 94-GHz Doppler radar
- 355-nm High spectral res. lidar
- <u>3-view</u> broad-band radiometer
- Multi-spectral imager

Near-future: SmallSats and CubeSats

- CYGNSS: NASA, U. Michigan
 - 2016 launch
 - All weather ocean surface wind speeds (non-real time)
 - 8 sats, 350 inclined novel sampling winds
- MicroMAS: MIT
 - Two 3U sensors by 2017
 - Mini sounders building towards ATMS-type capability
- MISTIC: NASA, BAE systems
 - Cloud/moisture AMVs, temperature and humidity profiling (following AIRS legacy)
- TWICE: CSU, NASA
 - Tropospheric Water and Cloud ICE conical scans at 16 channels, 118-670 GHz
- RainCube: NASA-JPL
 - 6U constellation of profiling rain radars
 - 35.75 GHz, nadir, +10 dBZ, 250 m vertical, 5 km horizontal

Enabling the Next Generation: MicroMAS-1, MicroMAS-2, and MiRaTA

MicroMAS = Microsized Microwave Atmospheric Satellite MiRaTA = Microwave Radiometer Technology Acceleration

MicroMAS-1

3U cubesat with 118-GHz radiometer

8 channels for temperature measurements

July 2014 launch, March 2015 release; validation of spacecraft systems; eventual transmitter failure

MicroMAS-2

3U cubesat scanning radiometer with channels near 90, 118, 183, and 206 GHz

12 channels for moisture and temperature profiling and precipitation imaging

Two launches in 2016/2017

MiRaTA

3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation

10 channels for temperature, moisture, and cloud ice measurements

Nov 2016 launch on JPSS-1, or deployed from ISS

First CubeSat Constellation in Early 2017: Two MicroMAS-2's and MiRaTA

Courtesy: MIT/LL

Enabling the Next Generation: Earth Observing Nanosatellite (EON-MW)

- All the features of MicroMAS (wide swath) and MiRaTA (sensitivity)
- 12U cubesat (21x21x34 cm)
- Larger aperture (improved spatial resolution)
- 23/31 + 50-60/88 + 166/183 GHz
 22 ATMS-equivalent channels
- 2-3 year mission lifetime
- Data downlink using S-band

Courtesy: MIT/LL

Far-future: Passive/Active Microwave

- ESA MetOp-SG
 - A Series
 - Launches in 2021, 2028, 2035
 - Multi-polarization Imager (3MI), IR Sounder (IASI-NG), UV-Vis-Near-IR sounder (Sentinal-5), Microwave Sounder (MWS), Radio Occultation sounder (RO)
 - B Series
 - Launches in 2022, 2030, 2036
 - Ice Cloud Imager (ICI), Scatterometer (SCA), Microwave Imager (MWI), Radio Occultation sounder (RO)
- JAXA GCOM-W2
 - Launching in 2023?
 - AMSR-2 and high resolution scatterometer?
- KMA Future LEO
 - Launch ~2022?
 - One or two instruments similar to SSMIS, ATMS, GPM, and/or CRiS
 - Looking at international/joint development
- Plenty of CMA and Roscosmos plans
 - Currently reaching close to SSM/I level capabilities
 - CMA planning radar, scat, imager programs ~2020+

Satellite TC Monitoring Summary

- Old school microwave imagers/sounders waning in numbers while next generation GEOs coming online
- Will DMSP F-20 SSMIS and WSF ever fly?
 - Do recent issues with SSMIS constellation (down to 1 partially functional sounder) influence course changes?
- Will CubeSats help fill the temporal issues in microwave sensing?
- Will METSATs begin ride sharing with "Com" satellites and will "data buys" enter the market long-term?

Future of NRL Satellite Applications

- Shift towards <u>research</u> and development of new guidance
- In-house development of new processing software
 - GeoIPS (Geolocated Information Processing Software)
 - Goal: process and visualize all meteorological and oceanographic data
 - Currently processes VIIRS, MODIS, geostationary vis/WV/IR, RapidSCAT
 - Processes 10-minutely
 Himawari data in real-time
 - Portability: processing products on 3 different clusters, and growing

Details seen in Himawari AHI: Cyclone Megh (2015)

Details seen in Himawari AHI: Cyclone Megh (2015)

0.64um (°C)

Full disk image courtesy CIRA

Future Products: Objective Structures

NRL Satellite Applications: To 2025

- Continue to advocate and acquire (near)real-time satellite observing capabilities for TC monitoring
- NRL TC web processing to transition to GeoIPS
 - In-house developed open-source python code
 - Allows more efficient data processing/exporting, easier transitions, upgrades, collaborations (e.g., FNMOC, NOAA)
- Strategy for next decade:
 - Support current and future satellite constellations by rapidly transitioning data into TC-centric products
 - Early adopters of cubesat data and investigate ability to help operations
 - Extract objective/automated metrics to inform TC intensity and structure analyses
 - Provide improved guidance of time evolution of microwave structures
 - Constrain structural state to improve model initialization, future potential